THE INFLUENCE OF LANTHANUM ON CALCIUM-STIMULATED ATP TRANSLOCATION IN RAT LIVER MITOCHONDRIA

T. SPENCER and F.L. BYGRAVE

Department of Biochemistry, The Australian National University, Faculty of Science, Canberra, A.C.T., Australia

Received 6 July 1972

1. Introduction

The translocation of adenine nucleotides across the inner mitochondrial membrane occurs via a specific 'permease' or 'translocase' located in the membrane. The action of this translocase is inhibited by atractyloside (for review see [1]). We have reported [2-5] that low concentrations of Ca²⁺ stimulate translocation of ATP while having little effect on that of ADP.

In efforts to further define the nature of the stimulation by Ca^{2+} we have carried out studies with the rare earth cation La^{3+} . This ion has proved to be a useful probe in studying interactions of Ca^{2+} with proteins, lipids and membranes in general [6–8], as well as with Ca^{2+} -induced energy-dependent processes in mitochondria [9–11].

2. Materials and methods

The preparation of rat liver mitochondria and assay of translocase activity using the back-exchange technique [12] were carried out exactly as described previously [3,4]. The materials used were as described [4]. LaCl₃ · 7H₂O was obtained from Ajax Chemicals Ltd., Sydney.

3. Results and discussion

The influence of La³⁺ on the translocation of ATP and ADP with and without added Ca²⁺ is shown in fig.1. The following effects can be seen: a) only that portion of ATP translocation which is stimulated by Ca²⁺ is inhibited by La³⁺ ($K_i = 3.5 \mu M$);

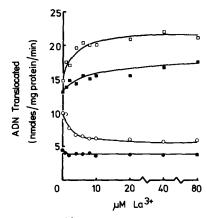


Fig. 1. Effect of La³⁺ on ATP and ADP translocation with and without added Ca²⁺. Each reaction mixture contained 200 mM sucrose, 2 mM HEPES-KOH buffer (pH 7.4), 250–500 μ g mitochondrial protein prelabelled with [3 H] ATP (see [4,12]). Ca²⁺ (200 μ M) and varying concentrations of La³⁺ were present as indicated. The total volume was 250 μ l. Incubations at 4° were started by the addition of 200 μ M ADP or ATP, continued for 10 sec and stopped by the addition of 50 μ M atractyloside. Translocase activity was measured as previously described [3,4]. Open symbols, Ca²⁺ present; closed symbols, Ca²⁺ absent; circles, ATP; squares, ADP.

b) ADP translocation in the absence of added Ca^{2+} is slightly stimulated by La^{3+} ($K_m = 25 \mu M$; maximal stimulation was 50%); c) ADP translocation in the presence of added Ca^{2+} is markedly stimulated by La^{3+} ($K_m = 7 \mu M$; maximal stimulation was 60%). These data show that La^{3+} has different effects on ADP and ATP translocation in the absence of Ca^{2+} and has completely opposite effects when Ca^{2+} is present. They also indicate that added Ca^{2+} enhances the stimulation of ADP translocation by La^{3+} .

Table 1

Effect of Ca²⁺ concentration on the inhibitor constant for La³⁺ of Ca²⁺-stimulated translocation of ATP.

Ca^{2+} concentration (μM)	K₁ for La ³⁺
200	4.0
400	12.5
1000	18.0

Incubations were carried out as described in the legend to fig. 1 except that the ${\rm La}^{3^+}$ concentration was varied in the presence of the four indicated concentrations of ${\rm Ca}^{2^+}$.

In other experiments, the influence of Ru^{3+} and Nd^{3+} on ADP and ATP translocation was also examined. As with La^{3+} , only that portion of ATP translocation stimulated by Ca^{2+} was inhibited by Ru^{3+} (K_i = = 1.5 μ M) and Nd^{3+} (K_i = 4.5 μ M). Ru^{3+} and Nd^{3+} , like La^{3+} , also stimulated the translocation of ADP. The affinity for these rare earth cations was increased from about 30 μ M to about 10 μ M in the presence of Ca^{2+} . The rates of translocation were stimulated some 50% in all cases. Thus the effects on adenine nucleotide translocation seen with La^{3+} in the absence and presence of Ca^{2+} are seen also with other rare earth cations.

Data in table 1 show that the K_i for La³⁺ inhibition of Ca²⁺-stimulated ATP translocation increases as the Ca²⁺ concentration increases. These findings further suggest that Ca²⁺ and La³⁺ compete for a common (binding) site in the vicinity of the translocase.

We have provided evidence [3-5] that the mechanism by which ${\rm Ca^{2}}^{+}$ stimulated ATP translocation is different from that involving uncouplers of oxidative phosphorylation such as CCCP [12]. Data shown in fig. 2 strongly support our contention. Here it is seen that, in contrast to ${\rm Ca^{2}}^{+}$ -stimulated ATP translocation (see fig. 1), uncoupler-stimulated ATP translocation is virtually unaffected by ${\rm La^{3}}^{+}$ concentrations up to $80~\mu{\rm M}$.

Meisner [13] has shown and we have confirmed [4] that K^+ stimulates ATP translocation in rat liver mitochondria. Furthermore we have shown that K^+ and Ca^{2+} are additive in their effects on ATP translocation [4]. Fig. 3 shows results from an experiment in which the effect was studied of La^{3+} on ATP translocation with and without added K^+ and Ca^{2+} . La^{3+}

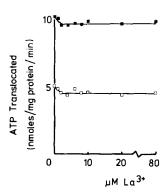


Fig. 2. Effect of La^{3+} on CCCP-stimulated translocation of ATP. Incubations were carried out as described in the legend to fig. 1. CCCP (2 μ M) and La^{3+} were present as indicated.

•, CCCP present; •, CCCP absent.

clearly has no effect on the K⁺-stimulated portion of ATP translocation but at the same time inhibits the Ca^{2+} -stimulated portion. Moreover the presence of K⁺ does not alter the affinity of the inhibition for La^{3+} ($K_i = 5 \mu M$ in the absence and presence of K⁺).

4. Conclusions

This study illustrates once more the usefulness of the rare earth cations in elucidating the effects of Ca²⁺ on biological processes. Using this cation we have been able to show that the response of ADP translocation to La³⁺ is clearly different to that of ATP translocation. This was particularly evident when low concentrations of Ca²⁺ were simultaneously present in the incubation mixture.

Secondly, we have provided conclusive evidence that the stimulation of ATP translocation induced by Ca²⁺ is different from that induced by uncouplers and that induced by K⁺. The observations that La³⁺ (i) inhibits only that portion of ATP translocation which is stimulated by Ca²⁺ and (ii) competes with added Ca²⁺, suggests a mechanism of stimulation which involves a binding site(s) for Ca²⁺ in the vicinity of the translocase and not one involving, for example, chelation of metal ion with ATP. Finally, while these data are consistent with our proposal [3,4] that Ca²⁺ exerts its effects by interacting with phospholipids in the vicinity of the translocase, they do not exclude possible interactions of Ca²⁺ with the protein moiety of the translocase.

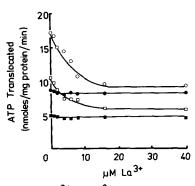


Fig. 3. Effect of La³⁺ on Ca²⁺-stimulated and K⁺-stimulated translocation of ATP. Incubations were carried out as described in the legend to fig.1. K⁺ (20 mM), Ca²⁺ (200 μ M) and La³⁺ were present as indicated. Open symbols, Ca²⁺ present; closed symbols, Ca²⁺ absent; circles, K⁺ present; squares, K⁺ absent.

References

[1] M. Klingenberg and E. Pfaff, in: Metabolic Roles of

- Citrate, ed. T.W. Goodwin (Academic Press, New York, 1968) p. 105.
- [2] T. Spencer and F.L. Bygrave, Proc.Aust.Biochem.Soc. 4 (1971) 97.
- [3] T. Spencer and F.L. Bygrave, Biochem.Biophys.Res. Commun. 43 (1971) 1290.
- [4] T. Spencer and F.L. Bygrave, Biochem.J., in press.
- [5] T. Spencer and F.L. Bygrave, J.Bioenergetics (1972) in press.
- [6] J.Y. Lettvin, W.F. Pickard, W.S. McColluch and W. Pitts, Nature 202 (1964) 1338.
- [7] D. van Breenen and C. van Breenen, Nature 223 (1969) 898.
- [8] E.R. Birnbaum, J.E. Gomez and D.W. Darnall, J. Amer.Chem.Soc. 92 (1970) 5287.
- [9] L. Mela, Arch.Biochem.Biophys. 123 (1968) 286.
- [10] L. Mela, Biochemistry 8 (1969) 2481.
- [11] A.L. Lehninger and E.Carafoli, Arch.Biochem. Biophys. 143 (1971) 506.
- [12] E. Pfaff and M. Klingenberg, European J.Biochem. 6 (1968) 66.
- [13] H. Meisner, Biochemistry 10 (1971) 3485.